Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0267722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445153

RESUMO

In Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment. IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.


Assuntos
Corynebacterium glutamicum , Mycobacterium tuberculosis , Proteínas Periplásmicas de Ligação , Fosforilação , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácido Aspártico/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas Quinases/metabolismo , Mycobacterium tuberculosis/genética , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo
2.
J Biol Chem ; 293(40): 15628-15640, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30154248

RESUMO

Aerobic respiration in Corynebacterium glutamicum involves a cytochrome bc1-aa3 supercomplex with a diheme cytochrome c1, which is the only c-type cytochrome in this species. This organization is considered as typical for aerobic Actinobacteria. Whereas the biogenesis of heme-copper type oxidases like cytochrome aa3 has been studied extensively in α-proteobacteria, yeast, and mammals, nothing is known about this process in Actinobacteria. Here, we searched for assembly proteins of the supercomplex by identifying the copper-deprivation stimulon, which might include proteins that insert copper into cytochrome aa3 Using gene expression profiling, we found two copper starvation-induced proteins for supercomplex formation. The Cg2699 protein, named CtiP, contained 16 predicted transmembrane helices, and its sequence was similar to that of the copper importer CopD of Pseudomonas syringae in the N-terminal half and to the cytochrome oxidase maturation protein CtaG of Bacillus subtilis in its C-terminal half. CtiP deletion caused a growth defect similar to that produced by deletion of subunit I of cytochrome aa3, increased copper tolerance, triggered expression of the copper-deprivation stimulon under copper sufficiency, and prevented co-purification of the supercomplex subunits. The secreted Cg1884 protein, named CopC, had a C-terminal transmembrane helix and contained a Cu(II)-binding motif. Its absence caused a conditional growth defect, increased copper tolerance, and also prevented co-purification of the supercomplex subunits. CtiP and CopC are conserved among aerobic Actinobacteria, and we propose a model of their functions in cytochrome aa3 biogenesis. Furthermore, we found that the copper-deprivation response involves additional regulators besides the ECF sigma factor SigC.


Assuntos
Cobre/metabolismo , Corynebacterium glutamicum/genética , Citocromos c1/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Aerobiose/genética , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions Bivalentes , Corynebacterium glutamicum/enzimologia , Citocromos c1/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Multimerização Proteica , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética , Fator sigma/genética , Fator sigma/metabolismo
3.
Mol Microbiol ; 106(5): 719-741, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28922502

RESUMO

When the cell envelope integrity is compromised, bacteria trigger signaling cascades resulting in the production of proteins that counteract these extracytoplasmic stresses. Here, we show that the two-component system EsrSR regulates a cell envelope stress response in the Actinobacterium Corynebacterium glutamicum. The sensor kinase EsrS possesses an amino-terminal phage shock protein C (PspC) domain, a property that sets EsrSR apart from all other two-component systems characterized so far. An integral membrane protein, EsrI, whose gene is divergently transcribed to the esrSR gene locus and which interestingly also possesses a PspC domain, acts as an inhibitor of EsrSR under non-stress conditions. The resulting EsrISR three-component system is activated among others by antibiotics inhibiting the lipid II cycle, such as bacitracin and vancomycin, and it orchestrates a broad regulon including the esrI-esrSR gene locus itself, genes encoding heat shock proteins, ABC transporters, and several putative membrane-associated or secreted proteins of unknown function. Among those, the ABC transporter encoded by cg3322-3320 was shown to be directly involved in bacitracin resistance of C. glutamicum. Since similar esrI-esrSR loci are present in a large number of actinobacterial genomes, EsrISR represents a novel type of stress-responsive system whose components are highly conserved in the phylum Actinobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Antibacterianos/farmacologia , Bacitracina/farmacologia , Sequência de Bases , Sítios de Ligação , Parede Celular/metabolismo , Corynebacterium glutamicum/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Fator sigma/metabolismo , Estresse Fisiológico , Transcrição Gênica/efeitos dos fármacos , Vancomicina/metabolismo
4.
Appl Microbiol Biotechnol ; 100(10): 4495-509, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26795961

RESUMO

Understanding the regulation of a heterologously expressed gene cluster in a host organism is crucial for activation of silent gene clusters or overproduction of the corresponding natural product. In this study, Streptomyces coelicolor M512(nov-BG1) containing the novobiocin biosynthetic gene cluster from Streptomyces niveus NCIMB 11891 was chosen as a model. An improved DNA affinity capturing assay (DACA), combined with semi-quantitative mass spectrometry, was used to identify proteins binding to the promoter regions of the novobiocin gene cluster. Altogether, 2475 proteins were identified in DACA studies with the promoter regions of the pathway-specific regulators novE (PnovE) and novG (PnovG), of the biosynthetic genes novH-W (PnovH) and of the vegetative σ-factor hrdB (PhrdB) as a negative control. A restrictive classification for specific binding reduced this number to 17 proteins. Twelve of them were captured by PnovH, among them, NovG, two were captured by PnovE, and three by PnovG. Unexpectedly some well-known regulatory proteins, such as the global regulators NdgR, AdpA, SlbR, and WhiA were captured in similar intensities by all four tested promoter regions. Of the 17 promoter-specific proteins, three were studied in more detail by deletion mutagenesis and by overexpression. Two of them, BxlRSc and BxlR2Sc, could be identified as positive regulators of novobiocin production in S. coelicolor M512. Deletion of a third gene, sco0460, resulted in reduced novobiocin production, while overexpression had no effect. Furthermore, binding of BxlRSc to PnovH and to its own promoter region was confirmed via surface plasmon resonance spectroscopy.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Família Multigênica , Novobiocina/biossíntese , Streptomyces coelicolor/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Fator sigma/genética , Fator sigma/metabolismo , Streptomyces coelicolor/metabolismo
5.
Appl Environ Microbiol ; 81(21): 7496-508, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276118

RESUMO

Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions.


Assuntos
Metabolismo dos Carboidratos , Ácidos Carboxílicos/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Aerobiose , Anaerobiose , Reatores Biológicos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo Energético , Fermentação , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo
6.
Metab Eng ; 30: 156-165, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26100077

RESUMO

The capability of Corynebacterium glutamicum for glucose-based synthesis of itaconate was explored, which can serve as building block for production of polymers, chemicals, and fuels. C. glutamicum was highly tolerant to itaconate and did not metabolize it. Expression of the Aspergillus terreus CAD1 gene encoding cis-aconitate decarboxylase (CAD) in strain ATCC13032 led to the production of 1.4mM itaconate in the stationary growth phase. Fusion of CAD with the Escherichia coli maltose-binding protein increased its activity and the itaconate titer more than two-fold. Nitrogen-limited growth conditions boosted CAD activity and itaconate titer about 10-fold to values of 1440 mU mg(-1) and 30 mM. Reduction of isocitrate dehydrogenase activity via exchange of the ATG start codon to GTG or TTG resulted in maximal itaconate titers of 60 mM (7.8 g l(-1)), a molar yield of 0.4 mol mol(-1), and a volumetric productivity of 2.1 mmol l(-1) h(-1).


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica/métodos , Succinatos/metabolismo , Aspergillus/enzimologia , Aspergillus/genética , Carboxiliases/biossíntese , Carboxiliases/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Ligantes de Maltose/biossíntese , Proteínas Ligantes de Maltose/genética
7.
Chem Asian J ; 10(1): 177-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25425216

RESUMO

A biohybrid ring-opening olefin metathesis polymerization catalyst based on the reengineered ß-barrel protein FhuA ΔCVF(tev) was chemically modified with respect to the covalently anchored Grubbs-Hoveyda type catalyst. Shortening of the spacer (1,3-propanediyl to methylene) between the N-heterocyclic carbene ligand and the cysteine site 545 increased the ROMP activity toward a water-soluble 7-oxanorbornene derivative. The cis/trans ratio of the double bond in the polymer was influenced by the hybrid catalyst.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Rutênio/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Catálise , Cisteína/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Compostos Heterocíclicos/química , Isomerismo , Metano/análogos & derivados , Metano/química , Polimerização
8.
Mol Microbiol ; 92(6): 1326-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24779520

RESUMO

The majority of bacterial genomes encode a high number of two-component systems controlling gene expression in response to a variety of different stimuli. The Gram-positive soil bacterium Corynebacterium glutamicum contains two homologous two-component systems (TCS) involved in the haem-dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of P(hrtBA) and P(hmuO) fused to eyfp revealed cross-talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (P(hmuO) and P(hrtBA) respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.


Assuntos
Corynebacterium glutamicum/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Corynebacterium glutamicum/fisiologia , Análise Mutacional de DNA , Histidina Quinase , Monoéster Fosfórico Hidrolases/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Transdução de Sinais , Especificidade por Substrato
9.
FEMS Microbiol Lett ; 350(2): 239-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24237595

RESUMO

The influence of nitrate and nitrite on growth of Corynebacterium glutamicum under aerobic conditions in shake flasks was analysed. When dissolved oxygen became limiting at higher cell densities, nitrate was reduced almost stoichiometrically to nitrite by nitrate reductase (NarGHJI). The nitrite concentration also declined slowly, presumably as a result of several reactions including reduction to nitric oxide by a side-activity of nitrate reductase. The flavohaemoglobin gene hmp was most strongly upregulated (19-fold) in the presence of nitrite. Hmp is known to catalyse the oxygen-dependent oxidation of nitric oxide to nitrate and, in the absence of oxygen, with a much lower rate the reduction of nitric oxide to nitrous oxide. A Δhmp mutant showed strong growth defects under aerobic conditions in the presence of nitrate, nitrite and the NO-donating reagent sodium nitroprusside, but also under anaerobic nitrate-respiring conditions. Therefore, Hmp is likely to be responsible for nitric oxide conversion to either nitrate or nitrous oxide in C. glutamicum. The results suggest that a cyclic nitrate-nitrite conversion takes place in C. glutamicum under microaerobic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Nitrato Redutase/metabolismo , Nitritos/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/fisiologia , Hemeproteínas/química , Hemeproteínas/genética , Mutação , Nitrato Redutase/química , Nitrato Redutase/genética , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Fenótipo , Estresse Fisiológico/genética
10.
J Bacteriol ; 195(18): 4283-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873914

RESUMO

DNA affinity chromatography with the promoter region of the Corynebacterium glutamicum pck gene, encoding phosphoenolpyruvate carboxykinase, led to the isolation of four transcriptional regulators, i.e., RamA, GntR1, GntR2, and IolR. Determination of the phosphoenolpyruvate carboxykinase activity of the ΔramA, ΔgntR1 ΔgntR2, and ΔiolR deletion mutants indicated that RamA represses pck during growth on glucose about 2-fold, whereas GntR1, GntR2, and IolR activate pck expression about 2-fold irrespective of whether glucose or acetate served as the carbon source. The DNA binding sites of the four regulators in the pck promoter region were identified and their positions correlated with the predicted functions as repressor or activators. The iolR gene is located upstream and in a divergent orientation with respect to a iol gene cluster, encoding proteins involved in myo-inositol uptake and degradation. Comparative DNA microarray analysis of the ΔiolR mutant and the parental wild-type strain revealed strongly (>100-fold) elevated mRNA levels of the iol genes in the mutant, indicating that the primary function of IolR is the repression of the iol genes. IolR binding sites were identified in the promoter regions of iolC, iolT1, and iolR. IolR therefore is presumably subject to negative autoregulation. A consensus DNA binding motif (5'-KGWCHTRACA-3') which corresponds well to those of other GntR-type regulators of the HutC family was identified. Taken together, our results disclose a complex regulation of the pck gene in C. glutamicum and identify IolR as an efficient repressor of genes involved in myo-inositol catabolism of this organism.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Regulação Bacteriana da Expressão Gênica , Inositol/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cromatografia de Afinidade , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Eletroforese em Gel de Poliacrilamida , Inositol/genética , Dados de Sequência Molecular , Família Multigênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas , Transcriptoma
11.
Microb Biotechnol ; 6(2): 189-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22513227

RESUMO

Corynebacterium glutamicum, an established microbial cell factory for the biotechnological production of amino acids, was recently genetically engineered for aerobic succinate production from glucose in minimal medium. In this work, the corresponding strains were transformed with plasmid pVWEx1-glpFKD coding for glycerol utilization genes from Escherichia coli. This plasmid had previously been shown to allow growth of C. glutamicum with glycerol as sole carbon source. The resulting strains were tested in minimal medium for aerobic succinate production from glycerol, which is a by-product in biodiesel synthesis. The best strain BL-1/pVWEx1-glpFKD formed 79 mM (9.3 g l(-1)) succinate from 375 mM glycerol, representing 42% of the maximal theoretical yield under aerobic conditions. A specific succinate production rate of 1.55 mmol g(-1) (cdw) h(-1) and a volumetric productivity of 3.59 mM h(-1) were obtained, the latter value representing the highest one currently described in literature. The results demonstrate that metabolically engineered strains of C. glutamicum are well suited for aerobic succinate production from glycerol.


Assuntos
Biotecnologia/métodos , Corynebacterium glutamicum/crescimento & desenvolvimento , Glicerol/metabolismo , Ácido Succínico/metabolismo , Aerobiose , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Meios de Cultura , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Plasmídeos , Especificidade por Substrato
12.
PLoS One ; 7(10): e46857, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056489

RESUMO

The fucose binding lectin LecB affects biofilm formation and is involved in pathogenicity of Pseudomonas aeruginosa. LecB resides in the outer membrane and can be released specifically by treatment of an outer membrane fraction with fucose suggesting that it binds to specific ligands. Here, we report that LecB binds to the outer membrane protein OprF. In an OprF-deficient P. aeruginosa mutant, LecB is no longer detectable in the membrane but instead in the culture supernatant indicating a specific interaction between LecB and OprF.


Assuntos
Proteínas de Bactérias/metabolismo , Lectinas/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Animais , Biofilmes , Hemaglutinação , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Lectinas/química , Ligação Proteica , Pseudomonas aeruginosa/fisiologia , Especificidade por Substrato
13.
Appl Microbiol Biotechnol ; 94(5): 1131-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22539022

RESUMO

In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.


Assuntos
Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/fisiologia , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Estresse Fisiológico , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Histidina Quinase , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Appl Environ Microbiol ; 78(9): 3325-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389371

RESUMO

Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Formiatos/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Acetatos/metabolismo , Anaerobiose , Fermentação , Deleção de Genes , Genes Bacterianos , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Mutagênese Insercional , Mycobacterium/enzimologia , Mycobacterium/genética , Recombinação Genética
15.
Microb Biotechnol ; 5(1): 116-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22018023

RESUMO

Corynebacterium glutamicum, an established industrial amino acid producer, has been genetically modified for efficient succinate production from the renewable carbon source glucose under fully aerobic conditions in minimal medium. The initial deletion of the succinate dehydrogenase genes (sdhCAB) led to an accumulation of 4.7 g l(-1) (40 mM) succinate as well as high amounts of acetate (125 mM) as by-product. By deleting genes for all known acetate-producing pathways (pta-ackA, pqo and cat) acetate production could be strongly reduced by 83% and succinate production increased up to 7.8 g l(-1) (66 mM). Whereas overexpression of the glyoxylate shunt genes (aceA and aceB) or overproduction of the anaplerotic enzyme pyruvate carboxylase (PCx) had only minor effects on succinate production, simultaneous overproduction of pyruvate carboxylase and PEP carboxylase resulted in a strain that produced 9.7 g l(-1) (82 mM) succinate with a specific productivity of 1.60 mmol g (cdw)(-1) h(-1). This value represents the highest productivity among currently described aerobic bacterial succinate producers. Optimization of the production conditions by decoupling succinate production from cell growth using the most advanced producer strain (C. glutamicumΔpqoΔpta-ackAΔsdhCABΔcat/pAN6-pyc(P458S) ppc) led to an additional increase of the product yield to 0.45 mol succinate mol(-1) glucose and a titre of 10.6 g l(-1) (90 mM) succinate.


Assuntos
Corynebacterium glutamicum/metabolismo , Meios de Cultura/metabolismo , Glucose/metabolismo , Ácido Succínico/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
16.
PLoS One ; 6(7): e22143, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799779

RESUMO

Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu(2+) was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cobre/toxicidade , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/fisiologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Histidina Quinase , Homeostase/efeitos dos fármacos , Homeostase/genética , Mutação , Motivos de Nucleotídeos/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética
17.
J Bacteriol ; 193(5): 1107-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21217000

RESUMO

The fucose-/mannose-specific lectin LecB from Pseudomonas aeruginosa is transported to the outer membrane; however, the mechanism used is not known so far. Here, we report that LecB is present in the periplasm of P. aeruginosa in two variants of different sizes. Both were functional and could be purified by their affinity to mannose. The difference in size was shown by a specific enzyme assay to be a result of N glycosylation, and inactivation of the glycosylation sites was shown by site-directed mutagenesis. Furthermore, we demonstrate that this glycosylation is required for the transport of LecB.


Assuntos
Membrana Celular/metabolismo , Lectinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicosilação , Lectinas/genética , Peso Molecular , Mutagênese Sítio-Dirigida , Periplasma/metabolismo , Transporte Proteico , Pseudomonas aeruginosa/genética
18.
J Bacteriol ; 193(5): 1212-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21217007

RESUMO

The response regulator HrrA of the HrrSA two-component system (previously named CgtSR11) was recently found to be repressed by the global iron-dependent regulator DtxR in Corynebacterium glutamicum. Here, we provide evidence that HrrA mediates heme-dependent gene regulation in this nonpathogenic soil bacterium. Growth experiments and DNA microarray analysis revealed that C. glutamicum is able to use hemin as an alternative iron source and emphasize the involvement of the putative hemin ABC transporter HmuTUV and heme oxygenase (HmuO) in heme utilization. As a central part of this study, we investigated the regulon of the response regulator HrrA via comparative transcriptome analysis of an hrrA deletion mutant and C. glutamicum wild-type strain in combination with DNA-protein interaction studies with purified HrrA protein. Our data provide evidence for a heme-dependent transcriptional activation of heme oxygenase. Based on our results, it can be furthermore deduced that HrrA activates the expression of heme-containing components of the respiratory chain, namely, ctaD and the ctaE-qcrCAB operon encoding subunits I and III of cytochrome aa(3) oxidase and three subunits of the cytochrome bc(1) complex. In addition, HrrA was found to repress almost all genes involved in heme biosynthesis, including those for glutamyl-tRNA reductase (hemA), uroporphyrinogen decarboxylase (hemE), and ferrochelatase (hemH). Growth experiments with an hrrA deletion mutant showed that this strain is significantly impaired in heme utilization. In summary, our results provide evidence for a central role of the HrrSA system in the control of heme homeostasis in C. glutamicum.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Heme/metabolismo , Homeostase/fisiologia , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Perfilação da Expressão Gênica , Genômica , Ferro/metabolismo , Modelos Biológicos , Mutação , Fosforilação , Recombinação Genética
19.
J Bacteriol ; 193(5): 1237-49, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183673

RESUMO

The two-component signal transduction system consisting of the sensor kinase MtrB and the response regulator MtrA is highly conserved in corynebacteria and mycobacteria. Whereas mtrA of Mycobacterium tuberculosis was reported to be essential, we recently succeeded in creating ΔmtrAB and ΔmtrA deletion mutants of Corynebacterium glutamicum and provided evidence that mepA and nlpC, both encoding putative cell wall peptidases, are directly repressed by MtrA, whereas proP and betP, both encoding carriers for compatible solutes, are directly activated by MtrA. In the present study, novel MtrA target genes were identified, including mepB, encoding another putative cell wall peptidase. The repressor or activator functions of MtrA correlate with the distance between the MtrA binding site and the transcriptional start site. From the identified binding sites within 20 target promoters, a 19-bp MtrA consensus motif was derived which represents a direct repeat of 8 base pairs separated by 3 base pairs. Gene expression of a strain containing MtrA with a D53N mutation instead of wild-type MtrA resembled that of a ΔmtrA mutant, indicating that MtrA is active in its phosphorylated form. This result was confirmed by electrophoretic mobility shift assays with phosphorylated MtrA which showed an increased binding affinity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Corynebacterium glutamicum/genética , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , Ligação Proteica , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
20.
Langmuir ; 26(13): 10593-9, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20433147

RESUMO

There is increasing interest in the use of viruses as model systems for fundamental research and as templates for nanomaterials. In this work, the rodlike fd virus was subjected to chemical modifications targeting different solvent-exposed functional groups in order to tune its surface properties, especially reversing the surface charge from negative to positive. The carboxyl groups of fd were coupled with different kinds of organic amines by carbodiimide chemistry, resulting in modified viruses that are positively charged over a wide range of pH. Care was taken to minimize intervirus cross linking, which often occurs because of such modifications. The surface amino groups were also grafted with poly(ethylene glycol) (PEG) end-functionalized with an active succinimidyl ester in order to introduce a steric stabilization effect. By combining charge reversal with PEG grafting, a reversible attraction between positively and negatively charged PEG-grafted fd viruses could be realized, which was tuned by the ionic strength of the solution. In addition, a charge-reversed fd virus forms only a pure nematic phase in contrast to the cholesteric phase of the wild type. These modified viruses might be used as model systems in soft condensed matter physics, for example, in the study of polyelectrolyte complexes or lyotropic liquid-crystalline phase behavior.


Assuntos
Vírus/química , Eletroforese , Eletroforese em Gel de Poliacrilamida , Ésteres/química , Ponto Isoelétrico , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química , Espalhamento de Radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...